Publicações | Page 5 | - CCMAR -
Found 3045 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
V
Vieira VMNCS, Engelen AH, Huanel OR, Guillemin M-L. Haploid females in the isomorphic biphasic life-cycle of Gracilaria chilensis excel in survival. BMC Evolutionary Biology. 2018;18(1). doi:10.1186/s12862-018-1285-z
Vieira VMNCS, Martins F, Silva J, Santos R. Numerical tools to estimate the flux of a gas across the air–water interface and assess the heterogeneity of its forcing functions. Ocean Science. 2013;9(2):355 - 375. doi:10.5194/os-9-355-201310.5194/os-9-355-2013-supplement
Vieira V, Oppliger LValeria, Engelen AH, Correa JA. A New Method to Quantify and Compare the Multiple Components of Fitness—A Study Case with Kelp Niche Partition by Divergent Microstage Adaptations to Temperature. Krkosek M, ed. PLOS ONE. 2015;10(3):e0119670. doi:10.1371/journal.pone.011967010.1371/journal.pone.0119670.g00110.1371/journal.pone.0119670.g00210.1371/journal.pone.0119670.g003
Vieira VMNCS, Mateus M, Canelas R, Leitão F. The FuGas 2.5 Updated for the Effects of Surface Turbulence on the Transfer Velocity of Gases at the Atmosphere–Ocean Interface. Journal of Marine Science and Engineering. 2020;8(6):435. doi:10.3390/jmse8060435
Vieira VMNCS, Engelen AH, Huanel OR, Guillemin M‐L. Differential Frond Growth in the Isomorphic Haploid–diploid Red Seaweed Agarophyton chilense by Long-term In Situ Monitoring. Krueger‐Hadfield S, ed. Journal of Phycology. 2021;57(2):592 - 605. doi:10.1111/jpy.v57.210.1111/jpy.13110
Viegas MN, Salgado MAntonia, Aguiar C, Almeida A, Gavaia P, Dias J. Effect of Dietary Manganese and Zinc Levels on Growth and Bone Status of Senegalese Sole (Solea senegalensis) Post-Larvae. Biological Trace Element Research. 2020. doi:10.1007/s12011-020-02307-4
Viegas MN, Dias J, M. Cancela L, Laizé V. Polyunsaturated fatty acids regulate cell proliferation, extracellular matrix mineralization and gene expression in a gilthead seabream skeletal cell line. Journal of Applied Ichthyology. 2012;28(3):427-432. doi:10.1111/j.1439-0426.2012.01994.x
Viegas CSB, Pinto JP, Conceição N, Simes DC, M. Cancela L. Cloning and characterization of the cDNA and gene encoding Xenopus laevis osteocalcin. Gene. 2002;289(1-2):97-107.
Viegas CSB, Rafael MS, Enriquez JL, et al. Gla-rich protein (GRP) is a new player in mineralization-competence of extracellular vesicles involved in vascular calcification. Journal of Vascular Research. 2015;52(1):1 - 88. doi:10.1159/000433498
Viegas CSB, Macedo AL, Matos AA, et al. Translational Research and Innovation in Human and Health Science: Gla-rich protein, a vitamin K-dependent protein involved in inflammation and calcification-related diseases. Annals of Medicine. 2018;50(sup1):S1 - S9. doi:10.1080/07853890.2018.1427452
Viegas CSB, Simes DC. Immunity And Inflammation In Health And Disease: Inflammation And Calcification In The Vascular Tree; Insights Into Atherosclerosis. Elsevier; 2018:189 - 201. doi:10.1016/B978-0-12-805417-8.00015-9
Viegas CSB, Rafael MS, Enriquez JL, et al. Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system. Arterioscler Thromb Vasc Biol. 2015;35(2):399-408. doi:10.1161/ATVBAHA.114.304823
Viegas CSB, Macedo AL, Morais R, et al. Dysregulated fetuin–mineral complexes are linked to vascular calcification in chronic kidney disease: The role of Gla-rich protein. Ultrastructural Pathology. 2017;41(1):78 - 80. doi:10.1080/01913123.2016.1269490
Viegas CSB, Simes DC. Gla-rich Protein (GRP): A New Player In The Burden Of Vascular Calcification. Journal of Cardiovascular Diseases & Diagnosis. 2016;4(4). doi:10.4172/2329-951710.4172/2329-9517.1000245
Viegas CSB, Simes DC. A dual role for GRP in cardiovascular disease. Aging. 2019;11(5):1323 - 1324. doi:10.18632/aging.v11i510.18632/aging.101851
Viegas MN, Laizé V, Salgado MA, Aguiar C, Dias J. Effect of Trace Minerals and B Vitamins on the Proliferation/Cytotoxicity and Mineralization of a Gilthead Seabream Bone–Derived Cell Line. Biological Trace Element Research. 2020;196(2):629 - 638. doi:10.1007/s12011-019-01939-5
Viegas C, Santos L, Macedo A, et al. CIRCULATING CALCIPROTEIN PARTICLES AND EXTRACELLULAR VESICLES AS NOVEL PLAYERS IN CHRONIC KIDNEY DISEASE VASCULAR CALCIFICATION. A ROLE FOR GLA-RICH PROTEIN. Nephrology Dialysis Transplantation. 2017;32(suppl_3):iii67 - iii68. doi:10.1093/ndt/gfx123.MO055
Viegas CSB, Simes DC, Williamson MK, et al. Sturgeon osteocalcin shares structural features with matrix Gla protein: evolutionary relationship and functional implications. J Biol Chem. 2013;288(39):27801-11. doi:10.1074/jbc.M113.450213
Viegas CSB, Costa RM, Santos L, et al. Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: Implications for calcification-related chronic inflammatory diseases. . de Frutos PGarcia, ed. PLOS ONE. 2017;12(5):e0177829.
Viegas CSB, Simes DC. New Perspectives for the Nutritional Value of Vitamin K in Human Health. Journal of Nutritional Disorders & Therapy. 2016;6(3). doi:10.4172/2161-050910.4172/2161-0509.1000192
Viegas CSB, Herfs M, Rafael MS, et al. Gla-rich protein is a potential new vitamin K target in cancer: evidences for a direct GRP-mineral interaction. Biomed Res Int. 2014;2014:340216. doi:10.1155/2014/340216
Viegas CSB, Conceição N, Fazenda C, Simes DC, M. Cancela L. Expression of Gla-rich protein (GRP) in newly developed cartilage-derived cell cultures from sturgeon ( Acipenser naccarii ). Journal of Applied Ichthyology. 2010;26(2):214 - 218. doi:10.1111/jai.2010.26.issue-210.1111/j.1439-0426.2010.01408.x
Viegas CSB, Cavaco S, Neves PL, et al. Gla-rich protein is a novel vitamin K-dependent protein present in serum that accumulates at sites of pathological calcifications. Am J Pathol. 2009;175(6):2288-98. doi:10.2353/ajpath.2009.090474
Viegas CSB, Simes DC, Laizé V, Williamson MK, Price PA, M. Cancela L. Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates. J Biol Chem. 2008;283(52):36655-64. doi:10.1074/jbc.M802761200
Viegas CSB, Santos L, Macedo AL, et al. Chronic Kidney Disease Circulating Calciprotein Particles and Extracellular Vesicles Promote Vascular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology. 2018;38(3):575 - 587. doi:10.1161/ATVBAHA.117.310578